Unit 1: Ready Classroom	8 th Grade	4 weeks	SCSD	
Geometric Figures			Math 2020	
Rigid Transformations and Congruence				
Domain(s): Geometry	<u> </u>		8.G	
Essential Question(s): How do we best communic	ate changes in orie	entation of geometric f	igures?	
How do you determine con	gruence and simila	nrity?		
Cluster(s): Understand congruence and similarity us	sing physical mode	els, transparencies or g	eometry software.	
G.1 Verify experimentally the properties of rotations, r	eflections, and trans	slations.		
Notes: A translation displaces every point in the plane by the same distance (in the same direction) and can be described using a vector. A rotation requires knowing the center/point of rotation and the measure/direction of the angle of rotation. A line reflection requires a line and the knowledge of perpendicular bisectors.				
8G.1.a Verify experimentally lines are mapped to lines	, and line segments	to line segments of the s	same length.	
8G.1.b Verify experimentally angles are mapped to ang	gles of the same me	asure.		
8G.1.c Verify experimentally parallel lines are mapped	to parallel lines.			
G.2 Know that a two-dimensional figure is congruent to another if the corresponding angles are congruent and the corresponding sides are congruent. Equivalently, two two dimensional figures are congruent if one is the image of the other after a sequence of rotations, reflections, and translations. Given two congruent figures, describe a sequence that maps the congruence between them on the coordinate plane.				
G.3 Describe the effect of dilations, translations, rotation	ons, and reflections	on two-dimensional figu	res using coordinates.	
Note: Lines of reflection are limited to both axes and lines of the form y=k and x=k, where k is a constant. Rotations are limited to 90 and 180 degrees about the origin. Unless otherwise specified, rotations are assumed to be counterclockwise.				

Essential Skills: Unit 1	Vocabulary	District Resources
 Successfully identify the different rigid motions of transformational geometry Draw transformations in the coordinate plane based on a knowledge of rules for transformations Perform multiple transformations on a geometric figure Be able to communicate a series of transformations on a given figure and its image drawn on a coordinate plane 	 Center of rotation Corresponding angles Corresponding sides Image Pre-Image Line of reflection Reflection Rigid Transformation Rotation Transformation Translation Rotational symmetry Degree Vertex X coordinate Y coordinate Congruent (~) Sequence of Transformations Academic Vocabulary Clockwise Counter clockwise Map onto Reverse order 	Ready Classroom- Unit 1 I-Ready Math Pathways Problem-Attic Delta Math Edpuzzle

30 degrees about the origin. Unless otherwise specified, rotations are a .4 Know that a two-dimensional figure is similar to another if the order des are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim the similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. .G.5 Use informal arguments to establish facts about the angle sur	similarity?	or geometry software.			
Relationships omain(s): Geometry ssential Question(s): What are some real world application: How do you determine congruence and luster(s): Understand congruence and similarity using physic .3 Describe the effect of dilations, translations, rotations, and ref ote: Lines of reflection are limited to both axes and lines of the form y 30 degrees about the origin. Unless otherwise specified, rotations are and .4 Know that a two-dimensional figure is similar to another if the origes are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim ne similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. G.5 Use informal arguments to establish facts about the angle sur	similarity?	ips? or geometry software.			
Relationships omain(s): Geometry ssential Question(s): What are some real world application: How do you determine congruence and luster(s): Understand congruence and similarity using physic .3 Describe the effect of dilations, translations, rotations, and ref ote: Lines of reflection are limited to both axes and lines of the form y 30 degrees about the origin. Unless otherwise specified, rotations are and .4 Know that a two-dimensional figure is similar to another if the origes are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim ne similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. G.5 Use informal arguments to establish facts about the angle sur	similarity?	ips? or geometry software.			
ssential Question(s): What are some real world applications How do you determine congruence and luster(s): Understand congruence and similarity using physic .3 Describe the effect of dilations, translations, rotations, and ref ote: Lines of reflection are limited to both axes and lines of the form y 80 degrees about the origin. Unless otherwise specified, rotations are a .4 Know that a two-dimensional figure is similar to another if the ordes are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim he similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. G.5 Use informal arguments to establish facts about the angle sur	similarity?	ips? or geometry software.			
How do you determine congruence and similarity using physic and a service of dilations, translations, rotations, and refuse the effect of dilations, translations, rotations, and refuse ote: Lines of reflection are limited to both axes and lines of the form y degrees about the origin. Unless otherwise specified, rotations are and a Know that a two-dimensional figure is similar to another if the orders are in proportion. Equivalently, two two-dimensional figures fortations, reflections, translations, and dilations. Given two sim he similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. G.5 Use informal arguments to establish facts about the angle sur	similarity?	or geometry software.			
 Juster(s): Understand congruence and similarity using physic .3 Describe the effect of dilations, translations, rotations, and ref ote: Lines of reflection are limited to both axes and lines of the form y 80 degrees about the origin. Unless otherwise specified, rotations are a .4 Know that a two-dimensional figure is similar to another if the ordes are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim he similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. .6.5 Use informal arguments to establish facts about the angle sur 					
 .3 Describe the effect of dilations, translations, rotations, and refore the effect of dilations, translations, rotations, and refore y so degrees about the origin. Unless otherwise specified, rotations are and the same in proportion. Equivalently, two two-dimensional figures for the form, reflections, translations, and dilations. Given two simples similarity between them on the coordinate plane. .6.5 Use informal arguments to establish facts about the angle sur 	models, transparencies o				
ote: Lines of reflection are limited to both axes and lines of the form y 30 degrees about the origin. Unless otherwise specified, rotations are 4 Know that a two-dimensional figure is similar to another if the o des are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim he similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. G.5 Use informal arguments to establish facts about the angle sur		igures using coordinates			
30 degrees about the origin. Unless otherwise specified, rotations are a .4 Know that a two-dimensional figure is similar to another if the order des are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim the similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. .G.5 Use informal arguments to establish facts about the angle sur	ctions on two-dimensional f	igures using coordinates.			
des are in proportion. Equivalently, two two-dimensional figures f rotations, reflections, translations, and dilations. Given two sim he similarity between them on the coordinate plane. ote: With dilation, the center and scale factor must be specified. G.5 Use informal arguments to establish facts about the angle sur	Note: Lines of reflection are limited to both axes and lines of the form y=k and x=k, where k is a constant. Rotations are limited to 90 and 180 degrees about the origin. Unless otherwise specified, rotations are assumed to be counterclockwise.				
G.5 Use informal arguments to establish facts about the angle sur	are similar if one is the imag	e of the other after a sequence			
-	Note: With dilation, the center and scale factor must be specified.				
8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. e.g. Arrange three copies of the same triangle so that the three angles appear to form a line, and give an argument in terms of transversals why this is so.					
Note: This standard does not include formal geometric proof. Multiple representations may be used to demonstrate understanding.					

Essential Skills: Unit 2	Vocabulary	District Resources
 Apply the scale factor to a dilation transformation in the coordinate plane Recognize and understand the angles created from parallel lines cut by a transversal Apply algebraic equation solving to find missing angles of parallel lines cut by a transversal Find the measures of interior and exterior angles of polygons using the appropriate formulae Recognize the characteristics of similarity in triangles Recognize and understand the angles created from parallel lines cut by a transversal Apply algebraic equation solving to find missing angles of parallel lines cut by a transversal Apply algebraic equation solving to find missing angles of parallel lines cut by a transversal 	 Center of dilation Dilation Similar (~) Congruent (~) Congruent (~) Ray Scale factor Proportional Relationship Interior angles Exterior angles Alternate exterior angles Alternate interior angles Alternate interior angles Corresponding angles Linear pair Same-side exterior angles Transversal Adjacent angles Similar triangles Parallel lines Transversal Reduce Statement Prove Intersect Nonadjacent Related 	Ready Classroom- Unit 2 I-Ready Math Pathways Problem-Attic Delta Math Edpuzzle

Unit 3:	Ready Classroom	8 th Grade	8 weeks	SCSD
Linea	ar Relationships			Math 2020
Slope, Linear	Equations, and Systems			
Domain(s):Expressions and Equations8.EE				
Essential Question	n(s): How can mathematical ideas	be communicated	correctly?	
Why are graphs helpful?				
What is equivalence?				
Do all equations lead to a solution?				
Cluster(s): Understand the connections between proportional relationships, lines, and linear equations.				
8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. e.g., Compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.				
8.EE.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y=mx for a line through the origin and the equation y=mx+b for a line intercepting the vertical axis at b.				
Cluster(s): Analyze and solve linear equations and pairs of simultaneous linear equations.				
8.EE.7 Solve linear equations in one variable.				

EE.7.a Recognize when linear equations in one variable have one solution, infinitely many solutions, or no solutions. Give examples and show which of these possibilities is the case by successively transforming the given equation into simpler forms.

EE.7.b Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and combining like terms. **Note: This includes equations that contain variables on both sides of the equation.**

8.EE.8 Analyze and solve pairs of simultaneous linear equations.

EE.8.a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. **Recognize when the system has one solution, no solution, or infinitely many solutions.**

EE.8.b Solve systems of two linear equations in two variables with integer coefficients: graphically, numerically using a table, and algebraically. Solve simple cases by inspection.

e.g., 3x + y = 5 and 3x + y = 6 have no solution because 3x + y cannot simultaneously be 5 and 6.

Notes: Solving systems algebraically will be limited to at least one equation containing at least one variable whose coefficient is 1. Algebraic solution methods include elimination and substitution.

This standard is a fluency expectation for grade 8. For more guidance, see Fluency in the Glossary of Verbs Associated with the New York State Next Generation Mathematics Learning Standards.

8.EE.8c Solve real-world and mathematical problems involving systems of two linear equations in two variables with integer coefficients. Note: Solving systems algebraically will be limited to at least one equation containing at least one variable whose coefficient is 1.

Essential Skills: Unit 3	Vocabulary	District Resources
 Compute constant rate of change from a table of values Recognize that y=mx+b graphs to a line Be able to plot a linear function on the coordinate plane from its table of values Graph a line from slope intercept form 	 Rate of change Slope Constant of proportionality Proportional relationship Right triangle Unit rate Linear equation 	Ready Classroom- Unit 3 I-Ready Math Pathways Problem-Attic

 Differentiate between the different forms of an equation of a line Match a linear equation to its graph Use the slope formula to determine an equation of a line Find the slope of a line from a table or graph Recognize a direct variation equation Solve a system of equations in two variables graphically Use the elimination or substitution method to solve a pair of simultaneous equations Construct an algebraic solution to a word problem that requires a simultaneous system of equations Recognize and understand the properties of addition and multiplication to include associative, commutative, identity, inverse, and zero Use inverse operations to solve equations in one variable Apply the properties of addition and multiplication to simplify expressions to lead to solutions of linear equations Be able to express a literal equation in terms of one variable by applying the properties of addition and multiplication Construct algebraic solutions to real life word problems in one variable to include combining like terms, geometric, and consecutive integer scenarios 	 Slope-intercept form Y-intercept Coefficient Distributive property Like terms Perimeter Term Variable Expression System of linear equations Academic Vocabulary Constant Define Derive Undefined Times as many In terms of Infinitely many Context Intersection Algebraically Eliminate Substitution Determine 	Delta Math Edpuzzle
---	---	------------------------

Unit 4: Ready Classroom	8 th Grade	6 weeks	SCSD		
Functions			Math 2020		
Linear and Nonlinear Relationships					
Domain(s): Functions 8.F					
Essential Question(s): How can we model the	relationship be	tween quantities?			
What is the best mode	el for mathemat	ical communication	?		
Cluster(s):					
Define, evaluate, and compare functions.					
F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.					
Notes: Function notation is not required in Grade 8.					
The terms domain and range may be introduced at this level; however, these terms are formally introduced in Algebra I (AI-F.IF.1).					
F.2 Compare properties of two functions each represen by verbal descriptions).	F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).				
e.g., Given a linear function represented by a table of values and a linear function represented by an algebraic equation, determine which function has the greater rate of change.					
Note: Function notation is not required in Grade 8.					
F.3 Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line. Recognize examples of functions that are linear and non-linear.					

e.g., The function $A=s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4), and (3,9), which are not on a straight line. *Note: Function notation is not required in Grade 8*.

Use functions to model relationships between quantities.

F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph. Sketch a graph that exhibits the qualitative features of a function that has been described **in a real-world context**.

e.g., where the function is increasing or decreasing or when the function is linear or non-linear.

Essential Skills: Unit 4	Vocabulary	District Resources
 Compare properties of two functions graphically, algebraically, numerically within 	FunctionInput (of a function)	Ready Classroom- Unit 4
 tables or by verbal descriptions Interpret y = mx+b to be the slope of a linear 	Linear functionNonlinear function	I-Ready Math Pathways
 function that graphs to a straight line Be able to represent non-linear functions (ie. 	Output (of a function)Initial value	Problem-Attic
Exponential, quadratic)Construct a function to model a linear	 Quadrants Qualitative description	Delta Math
 relationship between two quantities Determine the initial value and rate of change from a verbal word problem, from ordered 	 Review Factors of a number Prime number 	Edpuzzle
pairs, or from a graphSketch a graph that demonstrates the	 Rate of change and slope Supplementary angles	
qualitative characteristics represented in a verbal scenario	Academic Vocabulary Classify	
 Describe a graph qualitatively 	ModelInterval	
	Varying	

Unit 5: Ready Classroom	8 th Grade	4 weeks	SCSD	
Integer Exponents			Math 2020	
Properties and Scientific Notation				
Domain(s): Expressions and Equations			8.EE	
Essential Question(s): How can mathematical	ideas be repres	sented?		
Why is it helpful to writ	e numbers in di	ifferent ways?		
radicals and integer exponents. EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. e.g., $3^2 \times 3^{(-5)} = 3^{(-3)} = \frac{1}{(3^3)} = \frac{1}{27}$				
EE.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. e.g., Estimate the population of the United States as 3×10^8 and the population of the world as 7×10^9 , and determine that the world population is more than 20 times larger.				
EE.4 Perform multiplication and division with numbers expressed in scientific notation, including problems where both standard decimal form and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. Interpret scientific notation that has been generated by technology.				

Essential Skills: Unit 5	Vocabulary	District Resources
 Apply the laws of exponents to simplify expressions to include integer exponents Convert standard form to scientific notation (and vice versa) of large and small quantities when posed with real life problems Compare numbers in scientific notations by representing them with equivalent magnitude Apply mathematical operations (+,-,x,÷) to numbers expressed in scientific notation Use technology to interpret and calculate scientific notation 	 Base (of a power) Evaluate Exponent Power Reciprocal Integers Power of 10 Round Scientific notation Absolute value 	Ready Classroom- Unit 5 I-Ready Math Pathways Problem-Attic Delta Math Edpuzzle
	 Academic Vocabulary Related Simplify Set equal to Simplify Express Mass Contiguous Molecule 	

Unit 6: Ready Classroom	8 th Grade	6 weeks	SCSD	
Real Numbers			Math 2020	
Rational Numbers, Irrational Numbers				
and the Pythagorean Theorem				
Domain(s): The Number System			8.NS	
Expressions and Equations 8.EE				
Geometry			8.G	
Essential Question(s): How can mathematical ideas be represented?				
Why is it helpful to write numbers in different ways?				
How can algebraic concepts be applied to geometry?				
Why are formulas important in math and science?				
Cluster(s): Know that there are numbers that are n radicals and integer exponents.	ot rational and ap	proximate them by ra	tional numbers. Work with	

NS.1 Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion eventually repeats. Know that other numbers that are not rational are called irrational.NS.2. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.

NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line, and estimate the value of expressions.

EE.2 Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Know square roots of perfect squares up to 225 and cube roots of perfect cubes up to 125. Know that the square root of a non-perfect square is irrational. e.g., The $\sqrt{2}$ is irrational.

Understand and apply the Pythagorean Theorem.

8.G.6 Understand a proof of the Pythagorean Theorem and its converse.

8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

8.G.9 Given the formulas for the volume of cones, cylinders, and spheres, solve mathematical and real-world problems.

Solve real-world and mathematical problems involving volume of cylinders, cones and spheres.

8.G.9 Given the formulas for the volume of cones, cylinders, and spheres, solve mathematical and real-world problems.

Essential Skills: Unit 6	New/Review Vocabulary	District Resources	
Classify numbers as rational or irrational	• Cube root of x	Ready Classroom- Unit 6	
 Be able to convert rational numbers from 	 Perfect cube 		
fraction to decimal to order them according to	 Perfect square 	I-Ready Math Pathways	
value	 Square root of x 		
• Differentiate between the subsets of the real	 Integers 	Ducklass Auto	
number system	 Inverse operations 	Problem-Attic	
 Calculate perfect squares and cubes 	Product		
• Estimate the square or cube of a given integer	 Surface area 	Delta Math	
• Solve simple equations using square and cubed	 Rational number 		
rootsSolve word problems using the	 Repeating decimals 	Edpuzzle	
Pythagorean Theorem	Terminating decimals		
	Irrational number		
 Connect the Pythagorean theorem to the slope 	Real number		
of a line	 Pi (π) 		
	 Pythagorean Theorem 		

•	Use the Pythagorean Theorem to derive the		
	distance formula in the coordinate plan		

- Calculate the volume and surface area of three dimensional figures
- Find the value of a missing dimension of a three dimensional figure

• Converse of the Pythagorean Theorem

- Right triangle
- Hypotenuse
- Legs (of a right triangle)
- Multiple
- Right rectangular prism
- Cone
- Sphere
- Cylinder
- Prism
- Radius (of a circle)
- Vertex
- Volume

Academic Vocabulary

- Substitute
- Eventually
- Approximate (adjective) (\approx)
- Approximate (verb)
- Approximation
- Exact
- Proof
- Prove
- Consider
- Circular
- Cylindrical
- Spherical

Unit 7: Ready Classroom	8 th Grade	4 weeks	SCSD			
Statistics			Math 2020			
Two Variable Data and Fitting a Linear						
Model						
Domain(s): Statistics and Probability	<u>I</u>	ξ	3.SP			
Essential Question(s): How are patterns used to compare two quantities?						
How are trends in data used to predict outcomes?						
Cluster(s):						
Investigate patterns of association in bivariate data.						
SP.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.						
SP.2 Understand that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.						
SP.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. e.g., In a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each						
day is associated with an additional 1.5 cm in mature pl	0					
SP.4 Understand that patterns of association can also be frequencies in a two-way table. Construct and interpret from the same subjects. Use relative frequencies calcul variables	a two-way table sur	nmarizing data on two ca	ategorical variables collected			

Essential Skills	Vocabulary	District Resources
 Construct a scatter plot from a bivariate data table Interpret trends of data from a scatter plot Recognize positive, negative, or no correlations of a bivariate set of data Complete a two-way table from a verbal scenario Successfully answer questions posed from a scatter plot and/or two way table of bivariate data Model a line of best fit given a scatter plot and/or a table of values Connect the slope of a line and a linear equation of best fit to scatter plot correlation Determine the line of best fit for a bivariate data set 	 Association (between two variables) Balance Point Bivariate Line of fit Linear association Nonlinear association Negative association Positive association No association Scatter plot Data 	Ready Classroom- Unit 7 I-Ready Math Pathways Problem-Attic Delta Math Edpuzzle